Tuesday, May 19, 2015

Newton's Law Question Grade X (Soal Hukum Newton Kelas X)

1. A 10 kg box is placed on a table. A horizontal force of 32 N is applied to the box. A frictional force of 7N is present between the surface and the box.
a. Draw a force diagram indicating all the horizontal forces acting on the box.
b. Calculate the acceleration of the box.

1. Sebuah kotak dengan massa 10 kg diletakkan di atas meja. Gaya horisontal sebesar 32N di kenakan pada kotak. Gaya gesek sebesar 7N terjadi diantara permukaan meja dan kotak.
a. Gambar diagram gaya yang mengindikasikan semua gaya horisontal yang bekerja pada balok.
b. Hitung percepatan balok

Answer:
Given that: m (box) = 10 kg
                   F = 32 N
                   f = 7 N
Asked: a. Draw a force diagram indicating all the horizontal forces acting on the box.
            b. Calculate the acceleration of the box.
Answer:
a.
b. To calculate the acceleration of the box we will be using the equation FR = ma.
Therefore:
FR = ma
F1 + Ff = (10)(a)
32 − 7 = 10 a
25 = 10 a
a = 2,5m· s-1towards the left

Jawab:
Diketahui; m (balok) = 10 kg
                   F = 32 N
                   f = 7 N
a. Gambar diagram gaya yang terjadi pada balok,
b. Untuk menghitung percepatan balok, kami akan menggunakan hukum II Newton;
FR = ma
F1 + Ff = (10)(a)
32 − 7 = 10 a
25 = 10 a
a = 2,5m· s-1bergerak ke arah kiri.

2. Passengers with an unknown total mass, m, climb into the lift. A lift, mass 250 kg, is initially at rest on the ground floor of a tall building. The lift accelerates upwards at 1.6 m•s-2. The cable supporting the lift exerts a constant upward force of 4100 N. Use g = 10 m•s-2.
a. Draw a labeled force diagram indicating all the forces acting on the lift while it accelerates upwards.
b. What is the maximum mass, m, of the passengers the lift can carry in order to achieve a constant upward acceleration of 1,6 m•s-2.

2. Penumpang tanpa diketahui massa total, m, naik sebuah lift. Lift dengan massa 250 kg mula mula diam. Lift mengalami percepatan keatas dengan 1.6 m•s-2 . kabel yang menarik lift menerima gaya keatas sebesar 4100 N. Gunakan g = 10 m•s-2.
a. Gambar diagram gaya yang mengindikasikan semua gaya yang terjadi pada lift ketika lift mengalami percepatan keatas.
b. Berapa massa maksimum, m, penumpang sehingga lift dapat mencapai percepatan konstan keatas sebesar 1,6 m•s-2.

Answer:
a. Step 1 : Draw a force diagram.


b. Step 2 : Find the mass, m.
Let us look at the lift with its passengers as a unit. The mass of this unit will be (250 + m) kg and the force of the Earth pulling downwards (Fg) will be (250 + m) x 10.
If we apply Newton’s Second Law to the situation we get:
Fnet = ma
FC − Fg = ma
7700 − (250 + m)(10) = (250 + m)(1,6)
7700 − 2500 − 10 m = 400 + 1,6 m
4800 = 11,6 m
m = 413,79 kg

Jawab:
a. Langkah 1: Gambar diagram gaya
b. Langkah 2: Menghitung massa, m
Kita anggap lift beserta penumpang sebagai satu sistem. massa penumpang dan lift menjadi (250 + m) kg dan gaya gravitasi bumi yang menarik kebawah (Fg) menjadi (250 + m) x 10.
Jika kita menggunakan hukum Newton II ke sistem, dapat ditulis sbb:
Fnet = ma
FC − Fg = ma
7700 − (250 + m)(10) = (250 + m)(1,6)
7700 − 2500 − 10 m = 400 + 1,6 m
4800 = 11,6 m
m = 413,79 kg

3. A 50 kg crate is placed on a slope that makes an angle of 30◦ with the horizontal. The box does not slide down the slope. Calculate the magnitude and direction of the frictional force and the normal force present in this situation.

3.Sebuah kotak 50kg ditempatkan pada sebuah bidang miring dengan sudut 30◦ terhadap garis horisontal. Kotak tidk meluncur kebawah. Hitung nilai dan arah gaya gesek dan gaya normal yang terjadi pada situasi diatas.

Answer:
Step 1 : Draw a force diagram
Draw a force diagram and fill in all the details on the diagram. This makes it easier to understand the problem.

Figure 1.1: Friction and the normal forces on a slope
Step 2 : Calculate the normal force
The normal force acts perpendicular to the surface (and not vertically upwards).
It’s magnitude is equal to the component of the weight perpendicular to the slope.
Therefore:
N = Fg cos 30◦
N = 490 cos 30◦
N = 224N perpendicular to the surface
Step 3 : Calculate the frictional forceThe frictional force acts parallel to the surface and up the slope. It’s magnitude is
equal to the component of the weight parallel to the slope. Therefore:
Ff = Fg sin 30◦
Ff = 490 sin 30◦
Ff = 245N up the slope

Jawab:
Langkah 1: Lukislah diagram gaya
Lukislah diagram gaya dan tulis semua detail pada diagram. Hal ini memudahkan untuk mengerti permaslahan dalam soal.

Figure 1.1: Gaya gesek dan gaya normal pada bidang miring.
Langkah 2: Perhitungan gaya normal
Gaya normal merupakan gaya yang tegak lurus dengan permukaan ( dan tidak keatas secara vertikal).
Besar gaya normal sama dengan komponen berat yang tegak lurus dengan kemiringan.
Sehingga:
N = Fg cos 30◦
N = 490 cos 30◦
N = 224N tegak lurus terhadap permukaan

Langkah 3: Hitung gaya gesek
Gaya gesek terjadi sejajar dengan permukaan dan keatas sejajar dengan permukaan. Nilai gaya gesek sama dengan komponen berat yang sejajar dengan kemiringan.
Sehingga:
Ff = Fg sin 30◦
Ff = 490 sin 30◦
Ff = 245N berarah keatas

4. Find the tension in each cord in Fig.1.2. if the weight of the suspended object is w.
Fig 1.2. Chord Tension
4. Tentukan besar tegangan tali masing-masing pada gambar 1.3. Jika berat barang yang tergantung adalah w.
Gambar 1.3. Tegangan tali
Answer:
IDENTIFY: Apply ΣF = ma to the object and to the knot where the cords are joined.
SET UP: Let + y be upward and +x be to the right.
EXECUTE: (a) TC = w, TA sin30° + TB sin 45° = TC = w, and TA cos30° − TB cos45° = 0. Since
sin 45° = cos 45°, adding the last two equations gives TA(cos30° + sin30°) = w, and so
TA = w/1.366 = 0 732w. then
TB = TA cos 30°/ sin 30° = 0 897w
Jawab:
(a) TC = w,
     TA sin30° + TB sin 45° = TC = w, persamaan 1
     TA cos30° − TB cos45° = 0. persamaan 2
karena sin 45° = cos 45°, penambahan persmaan 1 dan 2 menghasilkan persamaan 3;
TA(cos30° + sin30°) = w, sehingga
TA = w/1.366 = 0 732w. maka
TB = TA cos 30°/ sin 30° = 0 897w
 
5. A 15.0-kg load of bricks hangs from one end of a rope that passes over a small, frictionless pulley. A28.0-kg counterweight is suspended from the other end of the rope, as shown in Fig. 1.4. The system is released from rest. (a) Draw two free-body diagrams, one for the load of bricks and one for the counterweight. (b) What is the magnitude of the upward acceleration of the load of bricks? (c) What is the tension in the rope while the load is moving? How does the tension compare to the weight of the load of bricks? To the weight of the counterweight?
Fig 1.4. tension on pulley
5. Sebuah muatan berisi batu bata dengan massa 15 kg bergantung disalah satu ujung tali, dimana gesekan katrol dapat diabaikan. Beban dengan massa 28 kg tergantung di ujung tali yang lain, seperti ditunjukkan pada gamber 1.4. Sistem mula mula diam a). Lukislah digram gaya yang bekerja pada sistem. b). Berapa besar percepatan keatas muatan batu bata? c). Berapa besar tegangan tali ketika beban bergerak? Berapa perbandingan tegangan tali dan muatan batu bata? dan perbandingan tegangan tali dan beban?
Fig 1.4. Tegangan tali pada katrol
Answer:

IDENTIFY: Apply ΣF = ma to the load of bricks and to the counterweight. The tension is the same at
each end of the rope. The rope pulls up with the same force (T ) on the bricks and on the counterweight.
The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the same magnitude.
(a) SET UP: The free-body diagrams for the bricks and counterweight are given in Figure 1.5.

Figure 1.15
(b) EXECUTE: Apply ΣFy = may to each object. The acceleration magnitude is the same for the two objects. For the bricks take +y to be upward since a for the bricks is upward. For the counterweight take +y to be downward since a is downward.
bricks: ΣFy = may
T − m1g = m1a
counterweight: ΣFy = may
m2g − T = m2a
Add these two equations to eliminate T:
(m2 − m1)g = (m1 + m2)a

(c) T − m1g = m1a gives
T = m1(a + g) = (15.0 kg)(2.96 m/s2 + 9.80 m/s2) =191 N
As a check, calculate T using the other equation.
m2g − T = m2a gives
T = m2(g − a) = 28.0 kg(9.80 m/s2 − 2.96 m/s2) =191 N, which checks.

EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to accelerate downward. If m1 = m2, a = 0 and T = m1g = m2g. In this special case the objects don’t move. If m1 = 0, a = g and T = 0; in this special case the counterweight is in free fall. Our general result is correct in these two special cases.

Jawab:
Gunakan ΣF = ma pada sistem muatan batu bata di atas. Tegangan tali besarnya sama pada tiap-tiap ujungnya. Tali menerima gaya T pada ujung muatan batu bata dan beban penarik.
beban penarik mengalami percepatan kebawah dan muatan batu bata mengalami percepatan ke atas; percepatan pada sistem besarnya sama.
(a) diagram gaya yang bekerja pada muatan batu bata dan beban penarik diberikan pada gambar 1.5..

Figure 1.15
(b) Gunakan ΣFy = may untuk masing-masing obyek. Besar percepatan adalah sama untuk kedua sistem. untuk batu bata ambil +y untuk arah pergerakan ke atas. Untuk beban penarik ambil +y untuk arah percepatan ke bawah.
batu bata: ΣFy = may
T − m1g = m1a ------------------ (1)
beban penarik: ΣFy = may
m2g − T = m2a ------------------ (2)
Tambahkan kedua persamaan untuk mengeliminasi T:
(m2 − m1)g = (m1 + m2)a

(c) T − m1g = m1a ;  maka
T = m1(a + g) = (15.0 kg)(2.96 m/s2 + 9.80 m/s2) =191 N
Untuk pembuktian, hitung nilai T dengan menggunakan persamaan yang lain.
m2g − T = m2a ; maka
T = m2(g − a) = 28.0 kg(9.80 m/s2 − 2.96 m/s2) =191 N, terbukti.

Jadi, Besar tegangan tali 1.30 kali berat muatan batu bata; Hal ini menyebabkan batu bata mengalami percepatan ke atas. Besar tegangan 0.696 kali berat penarik; Hal ini menyebabkan batu bata mengalami percepatan ke bawah. Jika m1 = m2, a = 0 and T = m1g = m2g. Pada kasus khusus ini, benda tidak bergerak. Jika m1 = 0, a = g and T = 0; pada kasus ini beban penarik akan mengalami gerak jatuh bebas. Hasil perhitungan diatas sesuai untuk kedua kasus ini.

6. Suatu benda bermassa m1 = 60 kg dilewatkan melalui katrol seperti nampak pada gambar.
a. Dengan gaya berapa orang harus menarik tali agar benda m1 terangkat dengan percepatan 2 m/s?
b. Seperti soal a, tetapi benda terangkat dengan kecepatan tetap?

Jawab:
Skema gaya-gaya yang bekerja pada gambar diatas:


a.  2T - W = m . a
     2T - m.g = m . a
     2T - 60. 10 = 60 . 2
     2T = 120 + 600
     2T = 720
     T = 360 N
b.  Jika benda terangkat dengan kecepatan tetap, maka percepatan benda a = 0 m/s2
     2T - W = 0
     2T - m.g = 0
     2T = 60 .  10
     2T = 600
     T = 300 N
 
7. Dua benda bermassa m1 dan m2 dihubungkan dengan sebuah katrol. Katrol ini kemudian ditarik oleh gaya F keatas. Jika m1 = 4kg, m2 = 2kg dan F = 60N, apa yang terjadi dengan kedua massa tersebut? Anggap massa tali dan massa katrol diabaikan.
Jawab:
Skema gaya-gaya yang bekerja pada gambar diatas:
Besar gaya yang diterima oleh T1 = F/2 dan T2 = F/2
Jadi, pada benda 1 bekerja gaya Newton sebagai berikut:
ΣF = m1 . a
T1 - w1 =m1 . a
F/2 - m1 . g = m1 . a
60/2 - 4 . 10 = 4. a
-10 = 4a
a = -10/4
a = -2.5 m/s2
Tanda negatif menunjukkan bahwa benda bergerak kebawah.

pada benda 2 bekerja gaya Newton sebagai berikut:
ΣF = m2 . a
T2 - w2 =m2 . a
F/2 - m2 . g = m2 . a
60/2 - 2 . 10 = 2. a
10 = 2a
a = 10/2
a = 5 m/s2

8. The masses of blocks A and B in Fig. below are 20.0 kg and 10.0 kg, respectively. The blocks are initially at rest on the floor and are connected by a massless string passing over a massless and frictionless pulley. An upward force F is applied to the pulley. Find the accelerations aa of block A and ab of block B when F is (a) 124 N; (b) 294 N; (c) 424 N.
Answer:
Each cord receive F/2
a). F = 124 N
     Ta = Tb = F/2 = 124/2 = 62 N
     Wa > Ta and Wb > Tb, so the blocks are still at rest.
     aa = ab = 0 m/s2

b). F = 294 N
     Ta = Tb = F/2 = 294/2 = 147 N
     Wa > Ta, so the block A is still at rest.
     aa= 0 m/s2
     Wb < Tb, so the block B is moving.
     ΣF = mb . ab
     Tb - wb =mb . ab
    F/2 - mb . g = mb . ab
  294/2 - 10 . 10 = 10. ab
   147 - 100 = 10ab
      10ab = 47
           ab = 4.7 m/s2
c). F = 424 N
     Ta = Tb = F/2 = 424/2 = 212 N
     Wa < Ta, so the block A is moving.
     ΣF = ma . aa
     Ta - wa =ma . ab
    F/2 - ma . g = ma . aa
  212 - 20 . 10 = 20. aa
   212 - 200 = 20aa
      20aa = 12
           aa = 0.6 m/s2
     Wb < Tb, so the block B is moving.
     ΣF = mb . ab
     Tb - wb =mb . ab
    F/2 - mb . g = mb . ab
  212 - 10 . 10 = 10. ab
   212 - 100 = 10ab
      10ab =112
           ab = 11.2 m/s2

9.One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging by a massless cord, as shown in Fig below.
a. If the buckets are at rest, what is the tension in each cord?
b. If the two buckets are pulled upward with an acceleration of 1.6 m/s2 by upper cord, calculate the tension in each cord.
Answer:
a. upper bucket = Object2
   lower bucket = Object1
Look at object 1  
ΣF = 0 (because object 1 is at rest)
T1 - w = 0
T1 = m . g
T1 = 3.2 kg . 10 m/s2
T1 = 32 N

Look at object 2
ΣF = 0 (because object 2 is at rest)
T2 - w - T1 = 0
T2 = m . g + T1
T2 = 32 N + 32 N
T2 = 64 N

b. Look at object 1  
ΣF = m . a (because the system is going up with a = 1.6 m/s2)
T1 - w =m . a
T1 = m . g + m . a
T1 = 3.2 kg . 10 m/s2 + 3.2kg . 1.6m/s2
T1 = 32 N + 5.12 N
T1 = 37.12 N

Look at object 2
ΣF = m . a (because the system is going up with a = 1.6 m/s2)
T2 - w1 - w2 = m . a
T2 = m1 . g + m2 . g + (m1+m2) . a
T2 = 3.2 kg . 10 m/s2 + 3.2kg . 10 m/s2 + (3.2+3.2) 1.6 m/s2
T2 = 32 N + 32 N + 10.24 N
T2 = 74.24 N

10. Untuk sistem yang ditunjukkan pada gambar disamping. Hitung tegangan tali T1, T2, dan T3 pada saat:
a. Sistem bergerak ke atas dengan percepatan a.
b. Sistem bergerak ke atas dengan kecepatan tetap.


Jawab:

a. Look at object 1  
ΣF = m . a (bergerak ke atas dengan percepatan a)
T1 - w =m . a
T1 = m1 . g + m1 . a
T1 = m1 (g + a)

Look at object 2
ΣF = m . a (bergerak ke atas dengan percepatan a)
T2 - w1 - w2 = m . a
T2 = m1 . g + m2 . g + (m1+m2) . a
T2 = (m1+m2). g + (m1+m2) . a
T2 = (m1+m2) . (a + g)

Look at object 3
ΣF = m . a (bergerak ke atas dengan percepatan a)
T3 - w1 - w2 - w3 = m . a
T3 = m1 . g + m2 . g + m3 . g + (m1+m2+m3) . a
T2 = (m1+m2+m3). g + (m1+m2+m3) . a
T2 = (m1+m2+m3) . (a + g)

b. Look at object 1  
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T1 - w = 0
T1 = m1 . g

Look at object 2
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T2 - w1 - w2 = 0
T2 = m1 . g + m2 . g
T2 = (m1+m2). g

 Look at object 3
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T3 - w1 - w2 - w3 = 0
T3 = m1 . g + m2 . g + m3 . g
T2 = (m1+m2+m3). g

No comments:

Post a Comment