Monday, November 16, 2015

Soal dan Pembahasan Elastisitas Bahan

8. Pada seutas kawat baja dengan panjang 3m dan luas penampang 0,15 cm² digantungkan sebuah beban bermassa 500 kg (g= 9,8m/s²). tentukan
a. tetapan gaya kawat
b. pertambahan panjang kawat; (modulus elastis baja= 2,0 × 1011 N/m²)
Jawaban:
Diketahui: l = 3 m
              A = 0,15 cm
              m = 500 kg
Ditanya: a). k?
             b). ∆x?
Jawab: a). Untuk mencari besar tetapan gaya kawat maka kita perlu mencari besar ∆x, sehingga kita perlu mengerjakan soal 8b). terlebih dahulu.
E = F . l / (A . ∆x)
2,0 × 1011   = m. g . l / (A . ∆x)
2,0 × 1011   = 500 . 9,8 / (0,15 . ∆x)
2,0 × 1011  = 4.900 / (0,15 . ∆x)
∆x = 16,33 × 10-11
dengan menggunakan hukum Hooke:
                F = k . ∆x
            m . g = k . ∆x
500 kg . 9,8 m/s² = k . 16,33 × 10-11
                 k = 3 × 1013

9. Modulus elastis kawat x setengah kali y. Panjang kawat x dan y masing - masing 1 m, dan diameter kawat x dan y 2 mm dan 1 mm .
a) Tentukan nilai perbandingan tetapan gaya kawat x dan y!
b) Jika kawat x diberi beban F, kawat x bertambah panjang 0,5 cm. tentukan pertambahan panjang kawat y jika diberi beban 2F!

Wednesday, October 28, 2015

Soal dan Pembahasan Gaya Listrik dan Medan Listrik

1. Diagram di bawah ini mnunjukkan tiga bola kecil bermuatan dengan muatan yang berbeda.
a). Berapakah nilai perbandingan gaya antara bola A dan B dengan gaya antara bola B dan C?
b). Berapakah resultan gaya yang bekerja pada bola B?


Jawab:











2. Dua buah muatan yang besar dan tandanya tidak diketahui diamati saling tolak menolak dengan gaya 1 N ketika jarak pisahnya 25cm. Berapakah gaya ini jika keduanya terpisah pada jarak:
a). 50 mm
b). 100 mm
c). 250 mm
d). 5 mm
Jawab:

 3. Dua muatan 1,0 x 10-9 C dan 9,0 x 10-9 C terpisah pada jarak 30 cm. Tentukan besar gaya listrik pada masing-masing muatan ketika berada:
a). di udara,
b). dalam bahan yang memiliki permitivitas relatif 3.
Jawab:


4. Sebuah muatan uji -5,0 x 10-7 C diletakkan di antara dua buah muatan lainnya, sehingga muatan tersebut berada 50 mm dari muatan -3,0 x 10-7 C dan 10 mm dari muatan -6,0 x 10-7 C. Ketiga muatan terletak pada satu garis lurus. Berapa besar dan arah gaya pada muatan uji?
Jawab:

5. Dua buah muatan q1 = 4,0 x 10-8 C dan q2 = 1,0 x 10-8 C terpisah pada jarak 21 cm.
a). Dimanakah seharusnya sebuah muatan -1,0 x 10-7 C diletakkan sehingga tidak ada resultan gaya yang bekerja pada muatan tersebut?
b). Dimanakah seharusnya sebuah muatan 1,0 x 10-7 C diletakkan sehingga tidak ada resultan gaya yang bekerja pada muatan tersebut?
Jawab: a).
 b).

6. Pada keempat titik sudut sebuah persegi yang panjang sisinya 30 cm terdapat muatan berturut-turut +5
µC, +5 µC, -5 µC, dan -5 µC. Tentukan besar dan arah gaya yang bekerja pada muatan uji +5 µC yang diletakkan di pusat persegi.
 Jawaban 1:

Alternatif jawaban kedua:

7. Suatu persegi sama sisi ABC yang panjang sisinya 30 cm berada di udara. Pada titik-titik sudut A, B, dan C berturut-turut terdapat muatan listrik -2 x 10-6 C, +2 x 10-6 C, dan +3 x 10-6. Tentukan besar gaya Coulomb di titik C.
 Jawab:

8. Kuat medan listrik di mana kedua keping sejajar yang terpisah 5 cm adalah 2,5 x 105 N/C. Setetes minyak bermuatan negatif dengan massa 4,5 x 10-11 g masuk kedalam keping dan mencapai keseimbangan ketika minyak berada di tengah-tengah keping.
a). Keping mana yang positif (keping atas atau keping bawah)?
b). Hitung besar muatan minyak.
c). Berapa besar gaya elektrostatik pada minyak sewaktu minyak berada 1,0 cm dari keping bawah?
 Jawab:

9. Dua buah muatan +1,8 x 10-7 C dan -1,8 x 10-7 terpisah sejauh 60 cm, Tentukan besar dan arah kuat medan listrik di tengah-tengah kedua muatan ini.
Jawab:

10. Dua buah muatan listrik +4q dan -q terpisah sejauh 1 dm. Dimanakah letak titik yang kuat medan listriknya nol?

Tuesday, October 20, 2015

Soal dan Pembahasan Hukum Newton tentang Gravitasi

30. Hitung besar dan arah resultan gaya gravitasi yang bekerja pada benda bermassa m (lihat gambar). Nyatakan jawaban anda dalam G, m, dan a.
Jawaban:



31. Tiga buah partikel diletakkan di titik-titik sudutsebuah segitiga siku-siku (lihat gambar). hitung besar dan tangen arah resultan gaya gravitasi yang bekerja pada partikel bermassa m. Nyatakan jawaban anda dalam G, m, dan a.
Jawaban:



32. Dua buah partikel bermassa 0,2 kg dan 0,3 kg terpisah sejauh 0,15 m. Partikel ketiga yang bermassa 0,05 kg diletakkan di antara keduanya dan pada garis hubung kedua partikel itu. Hitung:
a). Gaya gravitasi yang bekerja pada partikel ketiga jika partikel itu diletakkan 0,005 m daari benda bermassa 0,3 kg.
b). Di manakah di antara garis hubung tersebut partikel ketiga harus diletakkan agar gaya gravitasi tidak bekerja pada partikel itu?
 Jawaban:


36. Hitung besar dan arah percepatan gravitasi di suatu titik P yang terletak pada garis sumbu dari garis penghubung dua buah massa yang terpisah sejauh 2a, seperti ditunjukkan pada gambar. Nyatakan jawaban anda dalam G, m, dan a.


Jawaban:


37. Percepatan gravitasi di permukaan bumi adalah 9,8 m/s2. Hitung percepatan gravitasi di permukaan planet yang memiliki:
a). massa sama dan jari-jari dua kali;
b). jari-jari sama dan massa jenis dua kali;
c). jari-jari setengah kali dan massa jenis dua kali.
Jawaban:


38. Pada ketinggian berapa, di atas permukaan bumi, percepatan gravitasi akan berkurang;
a). 1% dibandingkan dengan permukaan bumi;
b). 5% dibandingkan dengan permukaan bumi?
Jawaban:



39. Dua planet P dan Q mengorbit matahari. Perbandingan antara periode revolusi planet P dan planet Q mengitari matahari 8:1. Apabila jarak planet Q ke matahari adalah 1,6 satuan astronomi, tentukan jarak planet P ke matahari.
Jawaban:


40. Dua planet P dan Q mengorbit matahari. Perbandingan antara jarak planet P dan planet Q ke matahari adalah 4 : 9. Apabila periode planet P mengelilingi matahari adalah 24 hari,, tentukan periode planet Q. 
Jawaban:

Thursday, June 11, 2015

Free Download Buku Fisika untuk SMA/MA Kelas XII


Praktis Belajar Fisika untuk Kelas XII
Sekolah Menengah Atas/Madrasah Aliyah
Penulis:

Aip Saripudin
Dede Rustiawan K.
Adit Suganda
Penyunting:
Firdaus Sukmono
Debby Juwita
Pewajah Isi: Yusuf Sobari
Ilustrator: Yudiana
Pewajah Sampul: Dasiman
download disini



Fisika untuk SMA/MA Kelas XIIPenulis : Drajat
download disini







Mudah dan Aktif Belajar Fisika untuk Kelas XII Sekolah Menengah Atas/Madrasah Aliyah
Program Ilmu Pengetahuan Alam

Penulis: Dudi Indrajit
Penyunting: Ahmad Saripudin
Pewajah Isi: Neni Yuliati
Ilustrator: S. Riyadi
Pewajah Sampul: A. Purnama
download disini






Fisika Untuk SMA/MA Kelas XII
Disusun oleh:
Joko Budiyanto
Editor: Diyah Nuraini
Design Cover: Desteka
Setting/Layout: Ike Marsanti, Esti Pertiwi
download disini






FISIKA untuk Kelas XII SMA dan MA
Penyusun:

Suharyanto
Karyono
Dwi Satya Palupi
Desain Sampul: Uzi Sulistyo Adhi
Lay out: Sri Wahyuni
download disini


Wednesday, June 10, 2015

Free Download Buku Fisika untuk SMA/MA Kelas X






Mudah dan Aktif Belajar Fisika untuk Kelas X Sekolah Menengah Atas/Madrasah Aliyah
Program Ilmu Pengetahuan Alam
Penulis: Dudi Indrajit
Penyunting: Ahmad Fauzi
Pewajah Isi: Neni Yuliati
Ilustrator: S. Riyadi
Pewajah Sampul: A. Purnama
download disini






Praktis Belajar Fisika 1 untuk SMA/MA Kelas X
Penulis: Aip Saripudin
Dede Rustiawan K.
Adit Suganda
Editor: Firdaus Sukmono
Desain kulit: Dasiman
Desain isi: Yusuf Sobari
Ilustrator: Yudiana
download disini






Fisika Untuk SMA/MA Kelas X
Disusun oleh:
Joko Sumarsono
Editor: Diyah Nuraini
Design Cover: Desteka
Setting/Layout: Ike Marsanti, Esti Pertiwi
download disini



Monday, June 8, 2015

Free Download Buku IPA Terpadu untuk SMP/MTS Kelas IX






Ilmu Pengetahuan Alam Jilid 3 untuk SMP dan MTs Kelas IX
Penyusun:
Wasis
Sugeng Yuli Irianto
Editor:
Agung B.
Sri Untari
Perancang Kulit: Alfianto Subandi
Perancang Tata Letak Isi:
Alfianto Subandi
download disini






ILMU PENGETAHUAN ALAM Terpadu dan Kontekstual
Untuk SMP/MTs Kelas IX

Penulis:
Dewi Ganawati
Sudarmana
Wiwik Radyuni
Editor:
Linda Perwirawati
Ririn Safitri
Penata Letak Isi:Fitri Wahab
Desainer Sampul:Dyan Purnamawati
Ilustrator:Susanto
download disini



Alam Sekitar
IPA Terpadu untuk SMP/MTs kelas IX

Penulis : 
Diana Puspita
Iip Rohima
Penyunting : Akfen Efendi
Penata Letak :
Wahditamam M E
Desain Sampul :
Irfan syah
download disini






Mari Belajar IPA 3
Untuk SMP/MTs Kelas IX

Penulis : 
Elok Sudibyo
Wahono Widodo
Wasis
Dwi Suhartanti
Editor: Eko Supatmawati
Perancang Kulit : Gatut P
Layouter :
Wiwik
Ilustrator :
Tri Edie
download disini


Ilmu Pengetahuan Alam Sekolah Menengah Pertama
Penulis :
Nur Kuswanti
A. D. Duran Corebima
Rahardjo
Muhammad Amin
Sifak Indana
Mohamad Nur
Wasis
Arif Hidayat
Rinie Pratiwi P
Budi Jatmiko
Muslimin Ibrahim
Eko Hariadi
download disini






MARI BELAJAR ILMU ALAM SEKITAR 3
Untuk SMP/MTs Kelas IX
Penulis : Sukis Wariyono
Yani Muharomah
Editor : Indratno
Perancang Kulit : Risa Ardiyanto
Ilustrasi, Tata Letak : Risa Ardiyanto
download disini 

Free Download Buku IPA Terpadu untuk SMP/MTS Kelas VIII






Ilmu Pengetahuan Alam (Terpadu) Untuk SMP dan MTs Kelas VIII
Penulis:

Setya Nurachmandani
Samson Samsulhadi
Editor: Budi Wahyono dan Fitri Wahyudi
Ilustrator: Haryana Humardani
download disini





IPA 2 Untuk Kelas VIII SMP / MTs
Penyusun:

Henry G
Kuswanto
Tuti Hartiningsih
Lay Out: Atit W
Desain Sampul: Agus Sudiyanto
download disini






Alam Sekitar IPA Terpadu untuk SMP/MTs kelas VIII
Penulis:
Diana Puspita
Iip Rohima
Penyunting:
Akfen Efendi
Penata Letak:
Wahditamam M E
Desain Sampul:
Irfansyah
download disini






Ilmu Pengetahuan Alam Sekolah Menengah Pertama
Penulis:
Rinie Pratiwi
P Suyono
Nur Kuswanti
Wahono Widodo
Rahardjo
Elok Sudibyo
Yuni Sri Rahayu
Heru Kuswanto
Muhammad Amin
Bambang Subiyakto
Sukarmin
Budi Jatmiko
download disini







Belajar IPA Membuka Cakrawala Alam Sekitar
untuk Kelas VIII Sekolah Menengah Pertama/Madrasah Tsanawiyah
Penulis:

Saeful Karim
Ida Kaniawati
Yuli Nurul Fauziah
Wahyu Sopandi
download disini



Ilmu Pengetahuan Alam Jilid 2 untuk SMP dan MTs Kelas VIII
Penulis:
Wasis
Sugeng Yuli Irianto
download disini







ILMU PENGETAHUAN ALAM Untuk SMP/MTs Kelas VIII
Penulis:

H. Moch. Agus Krisno
Tri Tjandra Mucharam
Mampuono
Imam Suhada
Editor: Intan Mahanani
Ilustrasi:
Sigit Dwi Nugroho
Sunardi
Tri Haryanto
Bambang Sugiarto
Suhardi
Tata Letak:
Yuniar Adhi Anggoro
Ika Kristiyaningsih
Ibnu Wibowo
Sri Rahayu
Y. Dwi Ariyanto
Perancang Kulit: Wahyu Hardianto
Desain:
Bambang Hariyono
Inawati
download disini

Free Download Buku Fisika untuk SMA/MA Kelas XI






Mudah dan Aktif Belajar Fisika untuk Kelas XI Sekolah Menengah Atas/Madrasah AliyahProgram Ilmu Pengetahuan AlamPenulis: Dudi Indrajit

Penulis : Dudi Indrajit

Penyunting:
Ahmad Fauzi
Ahmad Saripudin
Pewajah Isi: Neni Yuliati
Ilustrator: S. Riyadi
Pewajah Sampul: A. Purnama
download disini






FISIKA Untuk Kelas XI SMA dan MA
Penyusun:

Dwi Satya Palupi
Suharyanto
Karyono
Desain Sampul: Uzi Sulistyo Adhi
Layout: Atit Wulandari
download disini







FISIKA Untuk Kelas XI SMA dan MA
Penyusun:


Sri Handayani
Ari Damari
download disini


FISIKA untuk SMA/MA Kelas XI
Penyusun:
Tri Widodo
Editor:
Widha Sunarno
Arief Satiyo Nugroho
Illustrator:
Pandu
Budi S
download disini

Free Download Buku IPA Terpadu untuk SMP/MTS Kelas VII


IPA Terpadu untuk SMP/MTS Kelas VII

Pengarang:
Dra. Anni Winarsih
Agung Nugroho S.Pd.
Drs. Sulityoso HP
M Zajuri Amd.
Supliyadi S.Pd.
Drs. Slamet Suyanto M.Ed.
download disini



ILMU PENGETAHUAN ALAM KELAS VII SMP/MTs
Disusun oleh:
Teguh Sugiyarto
Eny Ismawati
Layout:
M. Ismail
Caver
Agus Sunarno
Ilustrasi:
Anggit
download disini



ILMU PENGETAHUAN ALAM JILID 1 UNTUK KELAS VII SMP/MTs
Penulis:
Wasis
Sugeng Yuli Irianto
Ilustrasi Tata Letak:
Tim Dept. Grafis
download disini
 

Sunday, May 31, 2015

UNITS, PHYSICAL QUANTITIES AND VECTORS QUESTIONS

1.1 Starting with the definition find the number of (a) kilometers in 1.00 mile and (b) feet in 1.00 km.
Answer:
1.1. IDENTIFY: Convert units from mi to km and from km to ft.
SET UP: 1 in. = 2.54 cm, 1 km = 1000 m, 12 in. = 1 ft, 1 mi = 5280 ft.
EXECUTE:
(a) 1.00 mi = (1 00 mi) ((5280 ft)/(1 mi))((12 in)/(1 ft))((2.54 cm)/(1 in))(1m/(〖10〗^2 cm))(1km/(〖10〗^3 m)) = 1.61 km
(b) 1.00 km =  (1.00 km) ((〖10〗^3 m)/1km)((〖10〗^2 cm)/1m)((1 in)/(2.54 cm))((1 ft)/(12 in)) = 3.28 × 103 ft
EVALUATE: A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in a km.

1.2 According to the label on a bottle of salad dressing, the volume of the contents is 0.473 liter (L). Using only the conversions and express this volume in cubic inches.
Answer:
 1.2. IDENTIFY: Convert volume units from L to in.3.
SET UP: 1 L =1000 cm3. 1 in. = 2.54 cm
EXECUTE:
0 473 L×((〖10〗^3 cm)/1L)×((1 in.)/(2.54 cm))^3 = 28.9 in.3

EVALUATE: 1 in.3 is greater than 1 cm3, so the volume in in.3 is a smaller number than the volume in cm3, which is 473 cm3.
1.3 How many nanoseconds does it take light to travel 1.00 ft in vacuum? (This result is a useful quantity to remember.)
Answer:
1.3. IDENTIFY: We know the speed of light in m/s. t = d/v. Convert 1.00 ft to m and  t from s to ns.
SET UP: The speed of light is v = 3.00 ×10^8 m/s. 1 ft = 0.3048 m. 1 s =10^9 ns.
EXECUTE:
t = (0.3048 m)/(3.00×〖10〗^8 m/s) = 1.02×〖10〗^(-9) = 1.02 ns
EVALUATE: In 1.00 s light travels 3.00×〖10〗^8 m = 3.00×〖10〗^5 km =1.86×〖10〗^5 mi.

1.4 The density of gold is What is this value in kilograms per cubic meter?
Answer:
1.4. IDENTIFY: Convert the units from g to kg and from cm3 to m3.
SET UP: 1 kg =1000 g. 1 m =1000 cm.
EXECUTE:
19.3 g/cm^3 ×((1 kg)/1000g)×(100cm/1m)^3 = 1.93×〖10〗^4 kg/m^3 
EVALUATE: The ratio that converts cm to m is cubed, because we need to convert 〖cm〗^3 to  m^3.

1.5 The most powerful engine available for the classic 1963 Chevrolet Corvette Sting Ray developed 360 horsepower and had a displacement of 327 cubic inches. Express this displacement in liters (L) by using only the conversions and 1 in. = 2.54 cm.
Answer:
1.5. IDENTIFY: Convert volume units from in.3 to L.
SET UP: 1 L =1000 cm3. 1 in. = 2.54 cm.
EXECUTE: (327 in.3) × (2.54 cm/in.)3 × (1 L/1000 cm3) = 5.36 L
EVALUATE: The volume is 5360 cm3. 1 cm3 is less than 1 in.3, so the volume in cm3 is a larger number than the volume in in.3.

1.6 A square field measuring 100.0 m by 100.0 m has an area of 1.00 hectare. An acre has an area of If a country lot has an area of 12.0 acres, what is the area in hectares?
Answer:
 IDENTIFY: Convert ft2 to m2 and then to hectares.
SET UP: 1.00 hectare =1.00×104 m2. 1 ft = 0.3048 m.
EXECUTE: The area is (12 0 acres)(〖43 600 ft 〗^2/(1 acres)) ((0.3048 m)/(1.00 ft))^2 ((1.00 hectare)/(1.00×〖10〗^4 m^2 ))= 4.86 hectares.
EVALUATE: Since 1 ft = 0.3048 m, 1 ft2 = (0.3048)2 m2.

1.7 How many years older will you be 1.00 gigasecond from now? (Assume a 365-day year.)
Answer:
IDENTIFY: Convert seconds to years.
SET UP: 1 billion seconds =1×109 s. 1 day = 24 h. 1 h = 3600 s.
EXECUTE: 1.00 billion seconds = (1.00 109 s) (1h/3600s)(1d/(24 h))(1y/(365 d)) = 31.7 y.
EVALUATE: The conversion 1 y = 3.156 ×107 s assumes 1 y = 365.24 d,which is the average for one extra day every four years, in leap years. The problem says instead to assume a 365-day year.
 
1.8 While driving in an exotic foreign land you see a speed limit sign on a highway that reads 180,000 furlongs per fortnight. How many miles per hour is this? (One furlong is and a fortnight is 14 days. A furlong originally referred to the length of a plowed furrow.)
Answer:
IDENTIFY: Apply the given conversion factors.
SET UP: 1 furlong = 0.1250 mi and 1 fortnight = 14 days. 1 day = 24 h.
EXECUTE: (180 000 furlongs/fortnight) ((0.125 mi)/(1 furlong ))((1 fortnight)/(14 d))((1 d)/(24 h)) = 67 mi/h
EVALUATE: A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a much smaller number.
 
1.9 A certain fuel-efficient hybrid car gets gasoline mileage of 55.0 mpg (miles per gallon). (a) If you are driving this car in Europe and want to compare its mileage with that of other European cars, express this mileage in Use the conversion factors in Appendix E. (b) If this car’s gas tank holds 45 L, how many tanks of gas will you use to drive 1500 km?
Answer:
IDENTIFY: Convert miles/gallon to km/L.
SET UP: 1 mi =1.609 km. 1 gallon = 3.788 L.
EXECUTE: (a) 55.0 miles/gallon = (55.0 miles/gallon) ((1.609 km)/1mi)((1 gallon)/(3.788 L)) = 23.4 km/L.
(b) The volume of gas required is (1500 km)/(23 4 km/L) = 64 1 L.
(64.1 L)/(45 L/tank) = 1.4 tanks.
EVALUATE: 1 mi/gal = 0.425 km/L. A km is very roughly half a mile and there are roughly 4 liters in a
gallon, so 1 mi/gal ~2/4 km/L, which is roughly our result.
 

 
1.10 The following conversions occur frequently in physics and are very useful. (a) Use 1 mi = 5280 ft and 1 h = 3600 s to convert 60 mph to units of ft/s (b) The acceleration of a freely falling object is 32ft/s2.  Use 1 ft = 30.48 cm to express this acceleration in units of m/s2. (c) The density of water is 1.0 g/cm3. Convert this density to units of kg/m3.
IDENTIFY: Convert units.
SET UP: Use the unit conversions given in the problem. Also, 100 cm = 1 m and 1000 g =1 kg.
EXECUTE: (a) ((60 mi)/h)((1 h)/3600s)((5280 ft)/1mi)=88 ft/s
(b) ((32 ft)/s^2 )((30.48 cm)/1ft)(1m/100cm)=9.8  m/s^2
(c) ((1.0 g)/〖cm〗^3 ) (100cm/1m)^3 (1kg/1000g)=〖10〗^3  kg/m^3
EVALUATE: The relations 60 mi/h = 88 ft/s and 1 g/cm3 =103 kg/m3 are exact. The relation
32 ft/s2 = 9.8 m/s2 is accurate to only two significant figures.

Tuesday, May 19, 2015

Newton's Law Question Grade X (Soal Hukum Newton Kelas X)

1. A 10 kg box is placed on a table. A horizontal force of 32 N is applied to the box. A frictional force of 7N is present between the surface and the box.
a. Draw a force diagram indicating all the horizontal forces acting on the box.
b. Calculate the acceleration of the box.

1. Sebuah kotak dengan massa 10 kg diletakkan di atas meja. Gaya horisontal sebesar 32N di kenakan pada kotak. Gaya gesek sebesar 7N terjadi diantara permukaan meja dan kotak.
a. Gambar diagram gaya yang mengindikasikan semua gaya horisontal yang bekerja pada balok.
b. Hitung percepatan balok

Answer:
Given that: m (box) = 10 kg
                   F = 32 N
                   f = 7 N
Asked: a. Draw a force diagram indicating all the horizontal forces acting on the box.
            b. Calculate the acceleration of the box.
Answer:
a.
b. To calculate the acceleration of the box we will be using the equation FR = ma.
Therefore:
FR = ma
F1 + Ff = (10)(a)
32 − 7 = 10 a
25 = 10 a
a = 2,5m· s-1towards the left

Jawab:
Diketahui; m (balok) = 10 kg
                   F = 32 N
                   f = 7 N
a. Gambar diagram gaya yang terjadi pada balok,
b. Untuk menghitung percepatan balok, kami akan menggunakan hukum II Newton;
FR = ma
F1 + Ff = (10)(a)
32 − 7 = 10 a
25 = 10 a
a = 2,5m· s-1bergerak ke arah kiri.

2. Passengers with an unknown total mass, m, climb into the lift. A lift, mass 250 kg, is initially at rest on the ground floor of a tall building. The lift accelerates upwards at 1.6 m•s-2. The cable supporting the lift exerts a constant upward force of 4100 N. Use g = 10 m•s-2.
a. Draw a labeled force diagram indicating all the forces acting on the lift while it accelerates upwards.
b. What is the maximum mass, m, of the passengers the lift can carry in order to achieve a constant upward acceleration of 1,6 m•s-2.

2. Penumpang tanpa diketahui massa total, m, naik sebuah lift. Lift dengan massa 250 kg mula mula diam. Lift mengalami percepatan keatas dengan 1.6 m•s-2 . kabel yang menarik lift menerima gaya keatas sebesar 4100 N. Gunakan g = 10 m•s-2.
a. Gambar diagram gaya yang mengindikasikan semua gaya yang terjadi pada lift ketika lift mengalami percepatan keatas.
b. Berapa massa maksimum, m, penumpang sehingga lift dapat mencapai percepatan konstan keatas sebesar 1,6 m•s-2.

Answer:
a. Step 1 : Draw a force diagram.


b. Step 2 : Find the mass, m.
Let us look at the lift with its passengers as a unit. The mass of this unit will be (250 + m) kg and the force of the Earth pulling downwards (Fg) will be (250 + m) x 10.
If we apply Newton’s Second Law to the situation we get:
Fnet = ma
FC − Fg = ma
7700 − (250 + m)(10) = (250 + m)(1,6)
7700 − 2500 − 10 m = 400 + 1,6 m
4800 = 11,6 m
m = 413,79 kg

Jawab:
a. Langkah 1: Gambar diagram gaya
b. Langkah 2: Menghitung massa, m
Kita anggap lift beserta penumpang sebagai satu sistem. massa penumpang dan lift menjadi (250 + m) kg dan gaya gravitasi bumi yang menarik kebawah (Fg) menjadi (250 + m) x 10.
Jika kita menggunakan hukum Newton II ke sistem, dapat ditulis sbb:
Fnet = ma
FC − Fg = ma
7700 − (250 + m)(10) = (250 + m)(1,6)
7700 − 2500 − 10 m = 400 + 1,6 m
4800 = 11,6 m
m = 413,79 kg

3. A 50 kg crate is placed on a slope that makes an angle of 30◦ with the horizontal. The box does not slide down the slope. Calculate the magnitude and direction of the frictional force and the normal force present in this situation.

3.Sebuah kotak 50kg ditempatkan pada sebuah bidang miring dengan sudut 30◦ terhadap garis horisontal. Kotak tidk meluncur kebawah. Hitung nilai dan arah gaya gesek dan gaya normal yang terjadi pada situasi diatas.

Answer:
Step 1 : Draw a force diagram
Draw a force diagram and fill in all the details on the diagram. This makes it easier to understand the problem.

Figure 1.1: Friction and the normal forces on a slope
Step 2 : Calculate the normal force
The normal force acts perpendicular to the surface (and not vertically upwards).
It’s magnitude is equal to the component of the weight perpendicular to the slope.
Therefore:
N = Fg cos 30◦
N = 490 cos 30◦
N = 224N perpendicular to the surface
Step 3 : Calculate the frictional forceThe frictional force acts parallel to the surface and up the slope. It’s magnitude is
equal to the component of the weight parallel to the slope. Therefore:
Ff = Fg sin 30◦
Ff = 490 sin 30◦
Ff = 245N up the slope

Jawab:
Langkah 1: Lukislah diagram gaya
Lukislah diagram gaya dan tulis semua detail pada diagram. Hal ini memudahkan untuk mengerti permaslahan dalam soal.

Figure 1.1: Gaya gesek dan gaya normal pada bidang miring.
Langkah 2: Perhitungan gaya normal
Gaya normal merupakan gaya yang tegak lurus dengan permukaan ( dan tidak keatas secara vertikal).
Besar gaya normal sama dengan komponen berat yang tegak lurus dengan kemiringan.
Sehingga:
N = Fg cos 30◦
N = 490 cos 30◦
N = 224N tegak lurus terhadap permukaan

Langkah 3: Hitung gaya gesek
Gaya gesek terjadi sejajar dengan permukaan dan keatas sejajar dengan permukaan. Nilai gaya gesek sama dengan komponen berat yang sejajar dengan kemiringan.
Sehingga:
Ff = Fg sin 30◦
Ff = 490 sin 30◦
Ff = 245N berarah keatas

4. Find the tension in each cord in Fig.1.2. if the weight of the suspended object is w.
Fig 1.2. Chord Tension
4. Tentukan besar tegangan tali masing-masing pada gambar 1.3. Jika berat barang yang tergantung adalah w.
Gambar 1.3. Tegangan tali
Answer:
IDENTIFY: Apply ΣF = ma to the object and to the knot where the cords are joined.
SET UP: Let + y be upward and +x be to the right.
EXECUTE: (a) TC = w, TA sin30° + TB sin 45° = TC = w, and TA cos30° − TB cos45° = 0. Since
sin 45° = cos 45°, adding the last two equations gives TA(cos30° + sin30°) = w, and so
TA = w/1.366 = 0 732w. then
TB = TA cos 30°/ sin 30° = 0 897w
Jawab:
(a) TC = w,
     TA sin30° + TB sin 45° = TC = w, persamaan 1
     TA cos30° − TB cos45° = 0. persamaan 2
karena sin 45° = cos 45°, penambahan persmaan 1 dan 2 menghasilkan persamaan 3;
TA(cos30° + sin30°) = w, sehingga
TA = w/1.366 = 0 732w. maka
TB = TA cos 30°/ sin 30° = 0 897w
 
5. A 15.0-kg load of bricks hangs from one end of a rope that passes over a small, frictionless pulley. A28.0-kg counterweight is suspended from the other end of the rope, as shown in Fig. 1.4. The system is released from rest. (a) Draw two free-body diagrams, one for the load of bricks and one for the counterweight. (b) What is the magnitude of the upward acceleration of the load of bricks? (c) What is the tension in the rope while the load is moving? How does the tension compare to the weight of the load of bricks? To the weight of the counterweight?
Fig 1.4. tension on pulley
5. Sebuah muatan berisi batu bata dengan massa 15 kg bergantung disalah satu ujung tali, dimana gesekan katrol dapat diabaikan. Beban dengan massa 28 kg tergantung di ujung tali yang lain, seperti ditunjukkan pada gamber 1.4. Sistem mula mula diam a). Lukislah digram gaya yang bekerja pada sistem. b). Berapa besar percepatan keatas muatan batu bata? c). Berapa besar tegangan tali ketika beban bergerak? Berapa perbandingan tegangan tali dan muatan batu bata? dan perbandingan tegangan tali dan beban?
Fig 1.4. Tegangan tali pada katrol
Answer:

IDENTIFY: Apply ΣF = ma to the load of bricks and to the counterweight. The tension is the same at
each end of the rope. The rope pulls up with the same force (T ) on the bricks and on the counterweight.
The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the same magnitude.
(a) SET UP: The free-body diagrams for the bricks and counterweight are given in Figure 1.5.

Figure 1.15
(b) EXECUTE: Apply ΣFy = may to each object. The acceleration magnitude is the same for the two objects. For the bricks take +y to be upward since a for the bricks is upward. For the counterweight take +y to be downward since a is downward.
bricks: ΣFy = may
T − m1g = m1a
counterweight: ΣFy = may
m2g − T = m2a
Add these two equations to eliminate T:
(m2 − m1)g = (m1 + m2)a

(c) T − m1g = m1a gives
T = m1(a + g) = (15.0 kg)(2.96 m/s2 + 9.80 m/s2) =191 N
As a check, calculate T using the other equation.
m2g − T = m2a gives
T = m2(g − a) = 28.0 kg(9.80 m/s2 − 2.96 m/s2) =191 N, which checks.

EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to accelerate downward. If m1 = m2, a = 0 and T = m1g = m2g. In this special case the objects don’t move. If m1 = 0, a = g and T = 0; in this special case the counterweight is in free fall. Our general result is correct in these two special cases.

Jawab:
Gunakan ΣF = ma pada sistem muatan batu bata di atas. Tegangan tali besarnya sama pada tiap-tiap ujungnya. Tali menerima gaya T pada ujung muatan batu bata dan beban penarik.
beban penarik mengalami percepatan kebawah dan muatan batu bata mengalami percepatan ke atas; percepatan pada sistem besarnya sama.
(a) diagram gaya yang bekerja pada muatan batu bata dan beban penarik diberikan pada gambar 1.5..

Figure 1.15
(b) Gunakan ΣFy = may untuk masing-masing obyek. Besar percepatan adalah sama untuk kedua sistem. untuk batu bata ambil +y untuk arah pergerakan ke atas. Untuk beban penarik ambil +y untuk arah percepatan ke bawah.
batu bata: ΣFy = may
T − m1g = m1a ------------------ (1)
beban penarik: ΣFy = may
m2g − T = m2a ------------------ (2)
Tambahkan kedua persamaan untuk mengeliminasi T:
(m2 − m1)g = (m1 + m2)a

(c) T − m1g = m1a ;  maka
T = m1(a + g) = (15.0 kg)(2.96 m/s2 + 9.80 m/s2) =191 N
Untuk pembuktian, hitung nilai T dengan menggunakan persamaan yang lain.
m2g − T = m2a ; maka
T = m2(g − a) = 28.0 kg(9.80 m/s2 − 2.96 m/s2) =191 N, terbukti.

Jadi, Besar tegangan tali 1.30 kali berat muatan batu bata; Hal ini menyebabkan batu bata mengalami percepatan ke atas. Besar tegangan 0.696 kali berat penarik; Hal ini menyebabkan batu bata mengalami percepatan ke bawah. Jika m1 = m2, a = 0 and T = m1g = m2g. Pada kasus khusus ini, benda tidak bergerak. Jika m1 = 0, a = g and T = 0; pada kasus ini beban penarik akan mengalami gerak jatuh bebas. Hasil perhitungan diatas sesuai untuk kedua kasus ini.

6. Suatu benda bermassa m1 = 60 kg dilewatkan melalui katrol seperti nampak pada gambar.
a. Dengan gaya berapa orang harus menarik tali agar benda m1 terangkat dengan percepatan 2 m/s?
b. Seperti soal a, tetapi benda terangkat dengan kecepatan tetap?

Jawab:
Skema gaya-gaya yang bekerja pada gambar diatas:


a.  2T - W = m . a
     2T - m.g = m . a
     2T - 60. 10 = 60 . 2
     2T = 120 + 600
     2T = 720
     T = 360 N
b.  Jika benda terangkat dengan kecepatan tetap, maka percepatan benda a = 0 m/s2
     2T - W = 0
     2T - m.g = 0
     2T = 60 .  10
     2T = 600
     T = 300 N
 
7. Dua benda bermassa m1 dan m2 dihubungkan dengan sebuah katrol. Katrol ini kemudian ditarik oleh gaya F keatas. Jika m1 = 4kg, m2 = 2kg dan F = 60N, apa yang terjadi dengan kedua massa tersebut? Anggap massa tali dan massa katrol diabaikan.
Jawab:
Skema gaya-gaya yang bekerja pada gambar diatas:
Besar gaya yang diterima oleh T1 = F/2 dan T2 = F/2
Jadi, pada benda 1 bekerja gaya Newton sebagai berikut:
ΣF = m1 . a
T1 - w1 =m1 . a
F/2 - m1 . g = m1 . a
60/2 - 4 . 10 = 4. a
-10 = 4a
a = -10/4
a = -2.5 m/s2
Tanda negatif menunjukkan bahwa benda bergerak kebawah.

pada benda 2 bekerja gaya Newton sebagai berikut:
ΣF = m2 . a
T2 - w2 =m2 . a
F/2 - m2 . g = m2 . a
60/2 - 2 . 10 = 2. a
10 = 2a
a = 10/2
a = 5 m/s2

8. The masses of blocks A and B in Fig. below are 20.0 kg and 10.0 kg, respectively. The blocks are initially at rest on the floor and are connected by a massless string passing over a massless and frictionless pulley. An upward force F is applied to the pulley. Find the accelerations aa of block A and ab of block B when F is (a) 124 N; (b) 294 N; (c) 424 N.
Answer:
Each cord receive F/2
a). F = 124 N
     Ta = Tb = F/2 = 124/2 = 62 N
     Wa > Ta and Wb > Tb, so the blocks are still at rest.
     aa = ab = 0 m/s2

b). F = 294 N
     Ta = Tb = F/2 = 294/2 = 147 N
     Wa > Ta, so the block A is still at rest.
     aa= 0 m/s2
     Wb < Tb, so the block B is moving.
     ΣF = mb . ab
     Tb - wb =mb . ab
    F/2 - mb . g = mb . ab
  294/2 - 10 . 10 = 10. ab
   147 - 100 = 10ab
      10ab = 47
           ab = 4.7 m/s2
c). F = 424 N
     Ta = Tb = F/2 = 424/2 = 212 N
     Wa < Ta, so the block A is moving.
     ΣF = ma . aa
     Ta - wa =ma . ab
    F/2 - ma . g = ma . aa
  212 - 20 . 10 = 20. aa
   212 - 200 = 20aa
      20aa = 12
           aa = 0.6 m/s2
     Wb < Tb, so the block B is moving.
     ΣF = mb . ab
     Tb - wb =mb . ab
    F/2 - mb . g = mb . ab
  212 - 10 . 10 = 10. ab
   212 - 100 = 10ab
      10ab =112
           ab = 11.2 m/s2

9.One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging by a massless cord, as shown in Fig below.
a. If the buckets are at rest, what is the tension in each cord?
b. If the two buckets are pulled upward with an acceleration of 1.6 m/s2 by upper cord, calculate the tension in each cord.
Answer:
a. upper bucket = Object2
   lower bucket = Object1
Look at object 1  
ΣF = 0 (because object 1 is at rest)
T1 - w = 0
T1 = m . g
T1 = 3.2 kg . 10 m/s2
T1 = 32 N

Look at object 2
ΣF = 0 (because object 2 is at rest)
T2 - w - T1 = 0
T2 = m . g + T1
T2 = 32 N + 32 N
T2 = 64 N

b. Look at object 1  
ΣF = m . a (because the system is going up with a = 1.6 m/s2)
T1 - w =m . a
T1 = m . g + m . a
T1 = 3.2 kg . 10 m/s2 + 3.2kg . 1.6m/s2
T1 = 32 N + 5.12 N
T1 = 37.12 N

Look at object 2
ΣF = m . a (because the system is going up with a = 1.6 m/s2)
T2 - w1 - w2 = m . a
T2 = m1 . g + m2 . g + (m1+m2) . a
T2 = 3.2 kg . 10 m/s2 + 3.2kg . 10 m/s2 + (3.2+3.2) 1.6 m/s2
T2 = 32 N + 32 N + 10.24 N
T2 = 74.24 N

10. Untuk sistem yang ditunjukkan pada gambar disamping. Hitung tegangan tali T1, T2, dan T3 pada saat:
a. Sistem bergerak ke atas dengan percepatan a.
b. Sistem bergerak ke atas dengan kecepatan tetap.


Jawab:

a. Look at object 1  
ΣF = m . a (bergerak ke atas dengan percepatan a)
T1 - w =m . a
T1 = m1 . g + m1 . a
T1 = m1 (g + a)

Look at object 2
ΣF = m . a (bergerak ke atas dengan percepatan a)
T2 - w1 - w2 = m . a
T2 = m1 . g + m2 . g + (m1+m2) . a
T2 = (m1+m2). g + (m1+m2) . a
T2 = (m1+m2) . (a + g)

Look at object 3
ΣF = m . a (bergerak ke atas dengan percepatan a)
T3 - w1 - w2 - w3 = m . a
T3 = m1 . g + m2 . g + m3 . g + (m1+m2+m3) . a
T2 = (m1+m2+m3). g + (m1+m2+m3) . a
T2 = (m1+m2+m3) . (a + g)

b. Look at object 1  
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T1 - w = 0
T1 = m1 . g

Look at object 2
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T2 - w1 - w2 = 0
T2 = m1 . g + m2 . g
T2 = (m1+m2). g

 Look at object 3
ΣF = 0 (bergerak ke atas dengan kecepatan tetap)
T3 - w1 - w2 - w3 = 0
T3 = m1 . g + m2 . g + m3 . g
T2 = (m1+m2+m3). g